
Introduction

The REXX langauge was created in the late 1970's by Mike Cowlishaw of IBM as a command
programming language for IBM mainframes. Because the available languages of the time were quite
cumbersome to use, Cowlishaw set out to create a language that was more like a human language than a
computer language. Thus was born what would later be called REXX, the Restructured Extended
Executor. Because of its ease of use, REXX quickly became popular both inside and outside of IBM.
Today REXX is available for all of the major operating systems, and for some, like IBM's OS/2 Warp, it is
integrated seamlessly into the operating system.
Because of its design, REXX excels at dealing with the two things people usually work with: words
(strings) and numbers. REXX has some very powerful string-handling features and the precision of its
numerical functions can be controlled by the programmer. If you need 20 digits of precision in your
program, one simple command can be used to set it. If you later need, say, 40 digits of precision, only the
one line in the program has to be changed.
The following is an introduction to REXX, with an emphasis on its use with MainActor. It is not intended to
be an exhaustive description of the language, but to provide new users with some of the basics of the
language and to point out common errors that new users make.

REXX Basics

This section describes the basics of the REXX language for those with little or no REXX proramming
experience.

Creating a simple REXX program

Most people find that learning a new programming language    is most easily accomplished by looking at
example code to accomplish a specific task. That is the approach we will take in this document. To start
out, let's create a REXX program that prints a message to the screen.
REXX programs must begin with a comment line. This is a convenient place to describe what the program
does, so that when you don't use it for a long time, you can look at the program source code and find out
the program's purpose. Comments in REXX begin with a forward slash and asterisk, and end with an
asterisk and forward slash like this:

/* This is my very first REXX program. */

Comments can extend across multiple lines. The following examples are all valid REXX comments:

/*
 This is my very first REXX program.
*/

/* This is my very first REXX program.
 The program prints a message to the screen. */

Now, how do we print something on the screen? The SAY instruction is used to accomplish this. By
supplying the SAY instruction with a string, you can print a message to the screen (or more correctly
STDOUT which is usually the screen unless you have redirected the output). So, our simple REXX
program would look like this:

/* This is my first REXX program. All it does is
 print a message on the screen. */
Say "Hello! This message is from REXX."

Type in the above code and save it to a file. Under the Edit menu in MainActor, choose Start Rexx and
then select the file in the file dialog. An output window will appear as well as an input window. Type in the
requested data and the greetings will be printed to the output window.
Note that the string to be printed is surrounded by quote marks. Quote marks are used to indicate literal
strings. You can use either double or single quotes. Our program could just as well be written this way:

/* This is my first REXX program. All it does is
 print a message on the screen. */
Say 'Hello! This message is from REXX.'

Congratulations! You are now a REXX programmer!

Getting input from the user

Now let's modify our simple program from the previous section to ask the user for the string to be printed
to the screen. Again we use the SAY instruction to print a question on the screen:

/* Modified program to ask the user for a string, and
 then print it on the screen */
Say "What message would you like me to print?"

Now we need to get the string from the user. To do this we use the PARSE PULL instruction. Parsing is
the act of processing a string, and we are "pulling" a string from the user, hence the syntax of this
instruction. (As we will see later PARSE is a very powerful instruction that allows you to do all sorts of
manipulations on strings.) To get an answer from the user, we use this:

Parse Pull Answer

Answer is a variable that will contain the string that the user entered. Once we have that, all we have to
do is use the SAY instruction to print it to the screen:

/* Modified program to ask the user for a string, and
 then print it on the screen */
Say "What message would you like me to print?"
Parse Pull Answer
Say "Your message was:"
Say Answer

Now, if you have some experience with other programming languages like BASIC, you might be
wondering how REXX nows that the variable Answer is supposed to hold a string. Nowhere have we told
REXX what type of variable Answer is. The reason is that all variables in REXX are strings, and we will
discuss this more in the next section.

Data Types (or lack thereof) and Numerical Operations

Very often the first stumbling block people run into with REXX, if they have experience with other
programming languages, is the lack of data types. In REXX everything is a string, so there is no need to
declare variables as integer, floating, string, etc. as in other languages. This makes REXX much easier to
use, but it also results in a performance hit.
So, if everything is a string, how can REXX perform mathematical functions? If you perform a
mathematical operation on a REXX variable, REXX handles everything for you. There is no need to do
any conversions. For example, let's write a program that asks the user for two numbers and then prints
out their sum and product:

/* Input two numbers from the user and print
 the results to the screen */
Say "Enter the first number:"
Parse Pull FirstNumber
Say "Enter the second number:"
Parse Pull SecondNumber
Product=FirstNumber*SecondNumber
Sum=FirstNumber+SecondNumber
Say "The product is" Product
Say "The sum is" Sum

If you enter numbers, the program will work as expected. But try entering a letter or word instead of a
number when you run the program. REXX will accept the input, but it will generate an error when it tries to
do the multiplication. This is the infamous "Bad arithmetic conversion" error. Remember this one because
you are sure to see it. It means that you have tried to perform a mathematical operation on something that
is not a number.
By default REXX uses nine digits of precision. This can be changed by using the Numeric Digits
instruction before you begin any numerical operations. To set the precision to twenty digits use:

Numeric Digits 20

Unfortunately REXX does not have built-in support for more advanced functions like the trigonometric
functions. Only the basic functions (addition, subtraction, multiplication, and division) are built into the
language. However, there are usually freely available add-on libraries that provide these functions.

Conditionals and Boolean Operators

REXX has the often-used IF ... THEN ... ELSE operator and it works just like other languages except for
one important point- there is no ENDIF marker. In its simple form, you use IF to decide whether to
execute one statement or another (or perhaps do nothing). For example, let's write a program that asks
the user to enter either 1 or 2 and then prints the word "One" or "Two":

/* Asks the user for a 1 or a 2 and then prints out the
 corresponding word. */
Say "Please enter 1 or 2 and press return"
Parse Pull Number
If Number=1 then
 Say "One"
Else
 Say "Two"

The statement following the IF statement is executed if the test is true. If the test statement is false, then
the statement following the ELSE statement is executed. The ELSEstatement is optional. If you want to
execute multiple statements, you have to enclose them in a DO ... END loop like this:

If Number=1 then
 Do
 Say "One"
 Single=1
 Double=0
 End
Else
 Do
 Say "Two"
 Single=0
 Double=1
 End
 You can use the usual Boolean operators in the test statement. In REXX, as in many other languages,
the operators are

o = equal to
o < less than
o > greater than
o <= less than or equal to
o >= greater than or equal to
o not equal to
o <> greater than or less than (same as)
o not less than
o not greater than

The above operators can compare numbers and strings, although in the latter case the comparison will be
done after leading and trailing blanks are stripped away. To use strict comparison with strings different
operators are used. (In the normal comparison 0 and 0.0 are equal, but in a strict comparison they are
not.). The strict comparison operators are

o == equal to
o << less than
o >> greater than
o <<= less than or equal to
o >>= greater than or equal to
o = not equal to
o < not less than
o >not greater than

The boolean operators for combining test statements are

o &. and
o | or
o &.&. xor
o not (used to reverse one of the above)

The following is an example of using the boolean operators:

/* Test to see if two variables have particular values */
If Number=1 &. Product="MainActor" then
 Say "Customer ordered one copy of MainActor."
If Number>1 and Product="MainActor" then
 Say "Customer ordered" Number "copies of MainActor."

Loops

REXX has some very flexible capabilities when it comes to executing instructions multiple times. The
heart of REXX loops is the DO ... END structure. If you know ahead of time how many times you want to
execute the instructions, the loop is very simple. For example, to make the computer beep 5 times, you
would use this:

/* Make the computer beep five times at a frequency of 440 Hz
 (middle A note) for half a second each beep */
Do 5
 Call Beep 440,500 /* Last parameter is the duration in milliseconds */
End

The number after the DO statement is the number of times that the loop will be repeated. Should you wish
to have the loop execute indefinitely, simply use FOREVER after DO.
In most cases you will want to have the loop controlled by a variable. If we wanted to make the beeps
change pitch each time, we could use something like this:

/* Make the computer beep five times and change the frequency of
 the beep each time */
Delta=50
Do i=1 to 5
 Call Beep 390+(Delta*i),500
End

Using the BY statement we could write the above program a bit more efficiently:

Do i=390 to 640 by 50
 Call Beep i, 500
End

Although more efficient, this method requires that we calculate the last value for the frequency. The most
efficient and easiest way to do it is to use a third form of the DO loop:

Do i=440 For 5 by 50
 Call Beep i, 500
End

Breaking Out Of Loops or Iterating

There are times when you need to either break out of a loop or go on to the next iteration. REXX provides
the LEAVE and ITERATE instructions for these purposes. You would most likely use LEAVE in a DO
FOREVER loop. Here is a program that loops until the user enters the answer "Y" to a question:

/* Ask the user a question repeatedly until they enter "Y" as the answer */
Do Forever
 "Does MainActor support more file formats than any other program?"
 Parse Pull Answer
 If Answer="Y" then
 Leave
 Else
 Say "You did not answer Y. Try again."
End

ITERATE is used when you want to continue to the next iteration rather than leaving the loop altogether.
Here is a program that prints the numbers 1 to 10 except for the number 7:

/* Print the numbers 1 to 10, except 7 */
Do i=1 to 10
 If i=7 then
 Iterate
 Else
 Say i
End

Stems (Arrays)

Stem variables in REXX behave in many ways like arrays in other languages, but they have some
powerful advantages in certain situations. Stem variables, like arrays, are useful when you want to group
pieces of data together. For example, you might be working with data that involve employees- name,
identification number, salary, etc.. In that case, it would be useful to have variables like Name, ID, and
Salary and be able to loop over them using an index number. REXX stems can do just this.
A stem variable is created using a valid variable name with a dot, as in Name., with the index coming after
the dot: Name.1, Name.2, etc One very nice feature of stems is that the index need not be a number. It is
perfectly valid to use strings like this:

Employee.Name="Bob Smith"
Employee.ID="1234567"
Employee.Salary="36000"

(One thing to be careful of when using strings as indices is to make sure that you aren't using a
variable of the same name. For example if you have Fred=1 and Name="Fred" and then use
Employee.Name, that is the same as Employee.1. This is a very powerful feature but it can lead to
unexpected results if you don't pay attention to it.)
If you need multiple dimensions, just use multiple dots, such as Name.1.1, Name.1.2, Name.2.1,
Name.2.2 and so on.
Unlike some other languages, REXX stems need not be "declared" before being used. Also, stem
variables can have the same name as other non-stem variables. Name. and Name are two different
variables as far as REXX is concerned.

Manipulating Strings

Some of the most powerful capabilities of REXX involve operations on strings. This section discusses
some of the string-handling functions built into REXX.

Basic String Functions

Below are some of the basic string-handling functions of REXX. In the calling methods, a parameter
enclosed by square brackets is optional.
LENGTH Returns the length (in characters) of a string. Length("A string") would return 8.
POS Returns the position of the first occurence of one string in another. The calling format is

Pos(Target,Source,[Start])

where Target is the string we are looking for, Source is the string that we are searching in, and Start is an
optional point (in characters) in the source string to begin the search (defaults to the beginning of the
source string).
SUBSTR Returns part of a string. The calling form is

Part=Substr(string,start,length)

where Part is the part of the string, string is the main string we want a part of, start is the starting position
(in bytes) in the main string, and length is the length of the substring that we want.
LASTPOS is similar to POS except that it returns the location of the last occurrence of the target string in
the source string.
WORDS returns the number of blank-delimited words in a string. Words("A string") returns 2, for example.
WORD returns a particular word in a string. The syntax is

Word(string,index)

where string is a REXX string and index tells which word in the string we want. The first word is 1, the
second is 2, and so on. Word("A string",2) would return string.
STRIP strips leading and/or trailing characters from a string. This function is useful for removing spaces at
the beginning and end of a string. The calling form is

Strip(string,[option],[character])

where string is the string we are operating on, option is either B (both leading and trailing characters, the
default), L (leading characters only), or T (trailing characters only), and character is the character to strip
with the default being a space. To strip leading and trailing spaces from a string simply use the form
Strip(string). To strip non-printing characters such as tabs, use the D2C (decimal to character) function
which allows you to specify characters by their ASCII codes. Strip(" Some string with leading and trailing
tabs ","B",D2C(9)) would strip both leading and trailing tabs (ASCII 9) from the string.

Concatenating Strings

REXX provides several ways of concatenating strings. The explicit concatenation operator is || as in

"A " || " String"
 which results in A String You can also simply list one string after another as in this exmaple:

String1="This is"
String2="an example"
String3="of string concatenation."
Say S tring1 String2 String3

You can also abutt literal strings with other literal strings or variables like this:

String1="This is"
Say String"a string."

The output would be This isa string. because no space is placed between the strings when they are
abutted. You would get the same result if you used

Say String||"a string"

Using the PARSE Function

In REXX, parsing is the process of splitting a source string into parts. For example, you might have a list
of people's names containing their first and last names, and need to split the first and last names from
each other. The PARSE instruction does just this. We have already used PARSE to get input from the
user. Let's write a program that asks the user for their name (first and last) and then greets them
informally and formally:

/* This program asks the user for his or her full name and
 then greets them informally and formally */
Say "Enter your full name (e.g. Bob Smith):"
Parse Pull FullName
Parse Var FullName FirstName LastName
Say "Hi" FirstName
Say "Hello Mr./Ms." LastName

In the PARSE instruction we split the full name that the user input into first and last names and then used
that create the greetings. The Var part of the instruction tells REXX that the source string we want to
operate on is going to be found in a variable. The name of that variable comes after the Var option. When
we asked the user for the full name, we stored it in the variable FullName, so that is the variable name
that should come after Var. What comes after the source variable is called the template. The template is
where the real power comes in because that is where you tell REXX exactly how you want it to split the
source string. In our case we have a string that consists of two words- the first and last names. By default
REXX uses the space as the separator, and that is what we need in this example. So our template,
FirstName LastName, tells REXX to put the first word (up to the first space) into the variable FirstName
and the second word into the variable LastName.
What happens in the above example if the user enters a name like Joe Bob Smith? That is, what happens
when the number of words in the source string is larger than the number of variables in the template? In
that case REXX puts one word in each of the first variables and when it gets to the last template variable,
it throws the rest of the string into the last template variable. So if Joe Bob Smith runs the program above,
FirstName will contain Joe and LastName will contain "Bob Smith".
What about the situation where the separator is some other character besides the space? For example,
what if our source string is the name of an image file, say image1.tif and we want to get the file extension
so that we can perform operations appropriate to the file type? In that case we have to specify the
separator in the parse template. Our separator is the dot, so our PARSE line would look like this:

/* This program asks the user for a file name and then splits it
 into the leading part plus the file extension */
Say "Enter a file name (e.g., image1.tif):"
Parse Pull FileName
Parse Var FileName FirstPart "." Extension
Say "The first part is" FirstPart
Say "The file extension is" Extension

By putting the "." between the two variables in the template, we are telling REXX to use the dot as the
separator.
A third variation of the template is useful when the separator character is either unknown at the time the
program is written, changes from one run to the next, or is not a printable character (such as a tab or
carriage return). In these cases, we would like to have the separator be specified by the contents of a
variable. To accomplish this, put the name of the variable in parentheses:

/* This program does the same thing as the file name splitter, but
 uses the contents of a variable as the separator */
Say "Enter a file name (e.g., image1.tif):"
Parse Pull FileName
Separator="."
Parse Var FileName FirstPart (Separator) Extension
Say "The first part is" FirstPart
Say "The file extension is" Extension

This program gives the same results as the previous one. A better example of the usefulness of this
method is a situation where the separator is an unprintable character, say, a tab. Just replace

Separator="."

with

Separator=D2C(9)

The ASCII code for a tab is 9 and the D2C function (Decimal to Character) creates a string given a
character's ASCII code. The variable Separator now contains the tab character, and you can parse tab-
delimited strings using (Separator) in the template. There are other functions similar to D2C such as C2D
which is the inverse of D2C (returns the ASCII code of a given character), C2X (character to
hexadecimal; X2C is the inverse), and B2X (binary to hexadecimal; X2B is the inverse).

File I/O

REXX has several functions for reading from and writing to a disk and for determining various properties
of disk files. This section covers these aspects of file I/O operations.

The STREAM Function

The STREAM function is used to get information on a file (or in general, a data stream, hence the name)
or to perform certain operations on the file. The calling form is

Stream(Filename,[Option],[Command])

where Filename is the name of the file, Option is either C (command), D (description), or S (state, the
default value), and Command is a command name to perform a specific operation on the stream. The
state and description operations are similar in that they return information on the status of the file, but the
description option will generally give more detailed information should an ERROR or NOTREADY status
be returned. The Command option has several useful variations (which are specified in the third
parameter passed to the function).
Passing the open command to STREAM as in

Stream("C:\CONFIG.SYS","C","Open")

would open the file CONFIG.SYS in read-write mode (i.e., you can perform read and write operations on
the file. Generally, it is not necessary to explicitly open a file for reading or writing as in other languages.
Performing a read or write operation on a closed file will implicitly open it. To open a file in read-only or
write-only mode simply append read or write onto the open command as in

Stream("C:\CONFIG.SYS","C","Open read")

When doing file I/O you must remember to close a file when you are finished with it. If you run into
a situation where you are doing operations on many files, but your program mysteriously just stops after
doing a few of them, it is very likely that you are not closing the files and are running out of file handles.
This is a very common mistake that people waste a lot of time tracking to track down! To close a
file after you are finished reading or writing, simply call STREAM like this:

Stream("somefile.txt","C","Close")

One very useful stream command is QUERY. You can use this command to determine if a file exists,
what its size is, and get its date and timestamps. To determine if a file exists, use

File=Stream("somefile.txt","C","Query Exists")

If the file exists, the full pathname of the file will be returned in the variable File. (You don't have to use the
name File. Any valid variable name will work.) If the file does not exist, it will return a null (empty) string.
To get the size of a file (in bytes), you would append size onto the command:

Size=Stream("somefile.txt","C","Query Size")

The variable Size would then contain the size of the file in bytes.
Finally, to get the date and time associated with a file, use datetime as in

Timestamp=Stream("somefile.txt","C","Query Datetime")

The date and time would be returned in a form like 09-15-97    14:26:38

Reading Data From Files

There are two REXX functions for reading data from a file depending on whether you want to read the file
byte-by-byte or line-by-line. To read a file byte-by-byte, you use the CHARIN function whose calling form
is:

result=Charin(filename,start,length)

where result is the variable that will hold the data that are read (any valid REXX variable name can be
used), filename is the name of the file to read from, start is the position (in bytes) to begin reading from
(The default is the beginning of the file.), and length tells how many bytes to read (The default is one
byte.). To read the first byte of a file, you would use this form:

FirstByte=Charin("somefile.txt")

Or you could explicitly specify the start and length parameters:

FirstByte=Charin("somefile.txt",1,1)

It is not necessary to keep track of the current position if you are reading bytes sequentially from a file. If
you wanted to read an entire file two bytes at a time, you would make multiple calls to CHARIN like this:

FirstByte=Charin("somefile.txt",,2)

leaving the start parameter blank. You can use the CHARS function to determine how many bytes are left
to be read:

BytesLeft=Chars("somefile.txt")

If you want to read text files line-by-line, REXX provides the LINEIN function. This function reads in one
line at a time putting the line (minus the end-of-line character or characters) into a variable:

Result=Linein("somefile.txt")

 Combining LINEIN with the LINES function makes it possible to read in the contents of a text file. LINES
has different return values under different REXX implementations. Under some, it returns a 0 (zero) if
there are no more lines to be read in and 1 (one) if there are more lines to be read. In some versions of
REXX, LINES will return the number of lines that remain to be read. To avoid portability problems, you
can just test the result to see if it is greater than zero, if so, you can continue to read from the file.
The following program would read in all of the lines of a file and print them to the screen (like the type
command in DOS and OS/2 and cat in Unix):

/* This program prints the contents of a text file to the screen. */
Do While Lines("somefile.txt")>0
 Result=Linein("somefile.txt") /* Read in a line */
 Say Result /* Print the line to the screen */
End
/* Close the file */
ReturnCode=Stream("somefile.txt","C","Close")

Writing Data To Files

REXX provides CHAROUT and LINEOUT to perform byte-by-byte and line-by-line output. The calling
form for CHAROUT is

count=Charout(filename,string,start)

where count is the number of bytes remaining to be written after the function call (0 if all bytes were
written), string is a sequence of bytes to write to the file specified in filename, and start is the byte position
in the file to begin writing (defaults the beginning of the file on the first call and the current position
thereafter).
LINEOUT is used when you want to write lines of text to a file. LINEOUT will write a specified string to the
file and add the appropriate end-of-line sequence for your operating system (e.g. a carriage
return/linefeed pair on DOS/Windows and OS/2 machines, linefeed for Unix). The calling form is

ReturnCode=Lineout("somefile.txt",string)

One thing to watch out for when writing data to a file is whether or not the file already exists.
Under some systems, using LINEOUT (or CHAROUT) on an existing file will replace the contents of the
file. Under others (OS/2 for example), the data will be appended to the existing file, so if you want the old
data to be replaced you have to delete the file before you attempt to write to it.

Calling System Functions or External Programs

Often it is necessary to perform some function that REXX itself is not capable of doing or is not efficient at
doing. In these cases it is necessary to call on functions built into the operating system or perhaps
another program. Copying a file is an example of the former. There is no built-in REXX function to copy a
file. It could be done purely in REXX using the file I/O functions, but why not just call the copy command
of the operating system? Another example would be a situation where you need to do some intensive
numerical calculations. Since REXX is interpreted, it is slow compared to compiled languages like C or
Fortran. It would be more efficient to call on a compiled program to do the calculations and then process
the output with REXX.
Fortunately, calling external programs from REXX is very easy. Any statement that REXX does not
recognize, it simply passes to the operating system. There is no copy command in REXX, so if you have
a line that reads

copy "c:\config.sys" "c:\config.bak"

REXX will not recognize copy and therefore it will pass it to the operating system, which, if you are
running OS/2 or Windows, it will understand.
A bit of advice that will probably save you some headaches is to put external commands in quotes to
ensure that REXX doesn't interpret the command as a variable. The copy command above would be
bettter written as

"copy c:\config.sys c:\config.bak"

to avoid any problems. Of course if you want to pass the contents of variables to the operating system or
an external program, do not put the variable names inside the quotes. An example that accomplishes the
same thing as the copy command above, but uses variables for the filenames, would be

SourceFile="c:\config.sys"
BackupFile="c:\config.bak"
"copy" SourceFile BackupFile

If you need to get a return code from a call to an external function or program, check the value of the
variable RC right after the call. REXX will automatically put the return code there.

Using REXX With MainActor

REXX was chosen as the scripting language for MainActor because it is a simple, but powerful language.
In this section we will look at some applications of REXX within MainActor.

Running REXX Scripts in MainActor

REXX scripts in MainActor are executed by selecting Start Rexx... in the Edit menu or by passing the
name of a REXX script file on the command line as in

mactr Script.rex
   

Creating an Animation File

To start, let's write a simple REXX script that will create an animated GIF from a set of TARGA files.
Suppose we have created a series of images of the Earth as it rotates and that the file names are
earth01.tga, earth02.tga, ... earth20.tga. First we need to load the images into MainActor. This is
accomplished with the LoadPictureList instruction. The calling form is

rc=LoadPictureList(BasePicture,Number)

where BasePicture is the first picture to load (in our case this is earth01.tga) and Number is the number
of pictures to load. If you specify 0 for Number then MainActor will load all of the appropriate images. The
variable rc will contain the return code from the call to the function. If the return code is 0, then the
function call was successful. If the return code is any other value, a problem was encountered.
Assuming that the call to LoadPictureList was successful, we now need to save the animation to disk.
The Save function enables you to create the animation file. The calling form is

rc=Save(File,Module,Codec,Frames,Width,Height)

where File is the filename (with path information if desired), Module is the animation module to use (in our
case "GIF-Anim" since we want an animated GIF), Codec is the codec you want to use (for an animated
GIF, the only value is "GIF-LZW"), Frames is either "AllFrames" or "SelectedFrames" (in our case we want
"AllFrames"), Width is the desired width of the animation, and Height is the height of the animation. To
keep the width and height the same as the source images, enter 0 for these parameters.
So, our script to create an animated GIF boils down to two lines of code! Of course, it is always a good
idea to at least look at the return codes, so we will add a couple of lines to print them out. Here is the
source code for our animation creator:

/* MainActor script to load the Earth images and
 make an animation out of them
*/
rc=LoadPictureList("F:\Images\earth\earth01.tga",0)
Say "RC from LoadPictureList:" rc
rc=Save("F:\Images\earth\earth.gif","GIF-ANIM","GIF-LZW","AllFrames",0,0)
Say "RC from Save:" rc

A More Flexible Animation Creation Script

Now let's look at the MainActor sample script CONVMPEG.REX which also converts a picture list into an
animation, namely an MPEG-I animation with the PAL codec. This script is more flexible than the simple
animated GIF script we did in the last section because it prompts the user for the project name rather than
having it hardcoded into the script. The function used to load a project is LoadProject(ProjectName)
where ProjectName is the name of the project. In this case we want to prompt for the project name, so we
enter an empty (null) string for ProjectName, that is, "". This script checks the return code from the call to
LoadProject(ProjectName) to make sure that the project actually exists. If the project does not exist
(i.e., the return code is not 0), then the script prints an error message and stops executing by using the
REXX EXIT command.
This script also provides a nice touch by displaying the time that it took to create the animation. This is
done using the built-in REXX function TIME. One of the features of TIME is that it can act as a
stopwatch. To use it, you simply call TIME with the "R" option to reset the timer just before entering the
section of code that you want to time. Then call TIME with the "E" option to get the elapsed time right
after exiting the section of code. In this case, we want to know how long a MainActor Save operation
takes, so that is the only code between the two TIME calls.
Here is the source code of the script:

/**
 * *
 * MainActor Rexx Script *
 * *
 * Loads a project and converts it to MPEG-I (PAL) *
 * Can be customized in any way *
 * *
 * Last modified: 09/09/97, Written by: Markus Moenig *
 * *
 **/

 say "Select Project ..."
 rc=LoadProject("") /* Load project ... */
 IF rc <> "0" THEN DO
 say "No project loaded! Exiting ..." /* Failed, exiting ... */
 exit
 END

 filename="c:" /* Use "" to get a file-requester */
 format="MPEG-I" /* Change this to use another format, like
"AVI" */
 codec="PAL" /* Use the codec which has "PAL" in its
identifier */
 frames="AllFrames" /* Use "SelectedFrames" if you only want to
convert */
 /* the selected frames of the project */
 width=0 /* Use original width */
 height=0 /* Use original height */

 /* You could for example use width=352 and height=288 to make sure that the
*/

 /* created MPEG has the default PAL dimensions */

 say "Converting project to" format "..."

 TIME("R") /* Reset the timer */
 Save(filename, format, codec, frames, width, height) /* Save it ... */

 say "Finished, needed" TIME("E") "seconds !"

 CloseProject() /* Closes the loaded project */

Converting an Entire Directory of Projects

This script converts all of the projects in a directory to a particular format (AVI in this example). It
illustrates the use of the LoadProjectPattern function which loads all projects matching a wildcard
pattern. The calling form is

rc=LoadProjectPattern(Pattern)

where Pattern is a wildcard pattern for file names such as "*.tif" or "*.*". This script will process all
projects, so we will use "*.*". We also use the GetProjectInfo function to retrieve the name of the project
by passing "NAME" as the parameter. We then use PARSE to split the project name so that we have the
first part and the extension. The first part serves as the basis of the new name, which will have the ".avi"
added to it. Here is the commented source code:

/**
 * *
 * MainActor Rexx Script *
 * *
 * Converts all projects inside a directory to AVI. Shows *
 * how to use LoadProjectPattern for automatic loading and *
 * converting of whole directories. *
 * *
 * Last modified: 09/19/97, Written by: Markus Moenig *
 * Modified slightly by Dirk Terrell on 10/23/97 *
 * *
 **/

 filepattern="h:\gfx\anims\Quick*.*" /* Substitute any other directory
here */

 DO WHILE LoadProjectPattern(filepattern) =0 /* This loop runs over all
files */
 BEGIN
 name=GetProjectInfo("NAME") /* Name of the project */
 Parse Var name newname "." Ext /* Cut off the extension from name */
 filename="c:\"newname /* filename, write new files to c:\ */
 format="AVI" /* Format */
 codec="Intel Indeo" /* Use Ultimotion */
 frames="AllFrames" /* Save all frames of the anim */
 width=0 /* Use original width */
 height=0 /* Use original height */

 say "Converting" GetProjectInfo("NAME") "to" filename "as" format "..."
 Save(filename, format, codec, frames, width, height) /* Save it ... */
 END

Getting Project Information

The sample script PROJINFO.REX returns information on the currently loaded project. If none is loaded,
then it will prompt the user for a project name. To determine if a project has been loaded, you can use the
GetGlobalInfo function with "LOADEDPROJECTS" as the parameter, as in

rc=GetGlobalInfo("LOADEDPROJECTS")

This function returns a 0 if no projects are loaded.
This program also illustrates how to print messages to the status line of the MainActor window rather than
the REXX output window. Use the SAY instruction to send messages to the REXX output window and
SetInfoText to send messages to the MainActor window. The calling form for SetInfoText is

rc=SetInfoText(string)

where string is the string to be displayed in the status area.
To get information about a loaded project, use the GetProjectInfo function. The calling form is

GetProjectInfo(option)

where option is one of the following:

o AUDIOMODE - returns "Stereo", "Mono", or a null string if the project has no audio data
o BITSPERSAMPLE - returns the bitsize (8 or 16) of the audio data, or a null string if there are no audio

data
o FRAMES - the number of frames in the project
o FORMAT - the format of the project such as AVI, Quick Time, etc.
o FULLNAME - the file name of the project with full path information included
o HEIGHT - the height of the project in pixels
o NAME - the name of the project as displayed in the project list
o SAMPLESPERSECOND - returns the number of samples per second for audio data or a null string if

there are no audio data
o SIZE - the size of the project in bytes
o TIMECODEMODE - returns "Global Timecode" if the project has a global timecode or "Local

Timecodes" if local timecodes are used.
o TYPE - returns either "Animation", "Picture List", or "Audio" indicating the type of the project
o WIDTH - returns the width of the project in pixels

Here is the commented source code for PROJINFO.REX:

/**
 * *
 * MainActor Rexx Script *
 * *
 * Returns information about the currently selected project *
 * *
 * Last modified: 09/04/97, Written by: Markus Moenig *
 * *
 **/

 IF GetGlobalInfo("LOADEDPROJECTS")= "0" THEN DO /* Check if there are */
 BEGIN /* any projects loaded
*/
 say "No project loaded! Trying to load project..."/* No: try to load one
*/
 rc=LoadProject("") /* If succeeded, rc = 0
*/
 IF rc <> "0" THEN DO
 say "No project loaded! Exiting ..." /* Failed, exiting ...
*/
 exit
 END
 END

 SetInfoText("Printing project information ...") /* Set a descriptive
info text */

 /* Use the GetProjectInfo() command to list the project
info */
 say "General Information:"
 say "* Project Name: " GetProjectInfo("NAME")
 IF GetProjectInfo("TYPE") <> "Picture List" THEN /* If project is no
picture list */
 say "* Full Name: " GetProjectInfo("FULLNAME") /* print complete name
*/
 say "* Size: " GetProjectInfo("SIZE") " bytes"
 say "* Type: " GetProjectInfo("TYPE")", Format: " GetProjectInfo("FORMAT")
 say "* Width: " GetProjectInfo("WIDTH")", Height: " GetProjectInfo("HEIGHT")
 say "* Frames: " GetProjectInfo("FRAMES")
 say "* Timecode: " GetProjectInfo("TIMECODEMODE")

 audiomode=GetProjectInfo("AUDIOMODE") /* Check if project has
audio */
 IF audiomode <> NULL THEN DO
 say "Audio Information:"
 say "* Audio Mode: " audiomode /* Print audio info */
 say "* Samples per Second: " GetProjectInfo("SAMPLESPERSECOND")
 say "* Bits per Sample: " GetProjectInfo("BITSPERSAMPLE")
 END

Writing Frame Information to a File

FRAMINFO.REX gets the available information on the frames of a project and writes it to a file. The
GetFrameInfo function returns information on frames and is used like this:

GetFrameInfo(FrameNumber, Option)

where FrameNumber is the frame number within the project and Option is one of the following:

o AUDIOSIZE - returns the size (in bytes) of the audio data or a null string if there are no audio data.
o COMPRESSION - the compression method used for the frame.
o OFFSET - the offset of the image data of the frame inside the animation. Returns a null string if the

frame is a picture.
o PICTURENAME - If the project is a picture list, this returns the full path and file name of the picture for

this frame. Otherwise, a null string is returned.
o SIZE - returns the size (in bytes) of the image data for the frame.
o TIMECODE - returns the timecode (in milliseconds) for the frame.

The script uses a DO loop to iterate over all of the frames and makes calls to GetFrameInfo to get the
various pieces of information. The information is then written to a file using the LINEOUT instruction. This
script illustrates an alternative to using the STREAM function to close a file. The file is closed by calling
the LINEOUT function with a null string as the string to write to the file. Here is the commented source
code:

/**
 * *
 * MainActor Rexx Script *
 * *
 * Writes all available information for the frames of the *
 * current project to a file *
 * *
 * *
 * Last modified: 09/06/97, Written by: Markus Moenig *
 * *
 **/

 filename="c:.txt" /* Set output filename */

 IF GetGlobalInfo("LOADEDPROJECTS")= "0" THEN DO /* Check if there are */
 BEGIN /* any projects loaded
*/
 say "No project loaded! Trying to load project..."/* No: try to load one
*/
 rc=LoadProject("") /* If succeeded, rc = 0
*/
 IF rc <> "0" THEN DO
 say "No project loaded! Exiting ..." /* Failed, exiting ...
*/
 exit
 END

 END

 SetInfoText("Writing frame information ...") /* Set descriptive info
text */
 say "Writing frame information to" filename "..."

 hasAudio="0"
 IF GetProjectInfo("AUDIOMODE") <> NULL THEN hasAudio="1" /* Check for audio
*/

 isPictureList="0" /* Check if project is picture list */
 IF GetProjectInfo("TYPE") ="Picture List" THEN isPictureList="1"

 frames=GetProjectInfo("FRAMES")
 i=1;
 DO WHILE i <= frames /* Iterate through all
frames */
 CALL LineOut filename, "Info for frame" i ":"
 CALL LineOut filename, " Image Data Size:" GetFrameInfo(i, "SIZE")
 CALL LineOut filename, " Image Data Offset:" GetFrameInfo(i, "OFFSET")
 CALL LineOut filename, " Timecode:" GetFrameInfo(i, "TIMECODE") "ms"
 CALL LineOut filename, " Compression:" GetFrameInfo(i, "COMPRESSION")
 CALL LineOut filename, " Keyframe:" GetFrameInfo(i, "KEYFRAME")
 IF hasAudio <> "0" THEN CALL LineOut filename, " Audio Size:"
GetFrameInfo(i, "AUDIOSIZE")
 IF isPictureList ="1" THEN CALL LineOut filename, " Picture Name:"
GetFrameInfo(i, "PICTURENAME")
 i=i+1
 END

 CALL LineOut filename /* Close stream */

 say "Ready."

Calculating Frame Statistics

The FRAMSTAT.REX script starts off by getting the number of frames in the project, and then uses a DO
loop to iterate over all of the frames and get their information. Calls to GetFrameInfo are made with the
SIZE and TIMECODE options and running totals of each are kept. (Notice the initialization of the sum
variables totalSize and totalTime to values of 0. Failing to do this will result in the infamous "Bad
arithmetic conversion" error.)
After the loop is finished, the average size and number of frames per second are computed by dividing
the totals by the number of frames. Here is the commented source code:

/**
 * *
 * MainActor Rexx Script *
 * *
 * Returns information and statistics about the size and *
 * timecodes for all frames of the current project *
 * *
 * Last modified: 09/04/97, Written by: Markus Moenig *
 * *
 **/

 IF GetGlobalInfo("LOADEDPROJECTS")= "0" THEN DO /* Check if there are */
 BEGIN /* any projects loaded
*/
 say "No project loaded! Trying to load project..."/* No: try to load one
*/
 rc=LoadProject("") /* If succeeded, rc = 0
*/
 IF rc <> "0" THEN DO
 say "No project loaded! Exiting ..." /* Failed, exiting ...
*/
 exit
 END
 END

 SetInfoText("Printing frame information ...") /* Set descriptive info
text */

 frames=GetProjectInfo("FRAMES")
 i=1; totalSize=0; totalTime=0;
 DO WHILE i <= frames /* Iterate from 1 to number of
frames */
 currentSize=GetFrameInfo(i, "SIZE")
 currentTime=GetFrameInfo(i, "TIMECODE")
 totalSize=totalSize + currentSize /* Sum up size for statistics */
 totalTime=totalTime + currentTime /* Sum up time for statistics */
 /* Print the frame line */
 say "Frame" i ":: Imagesize:" currentSize ", Timecode:" currentTime "ms"
 i=i+1

 END

 SetInfoText("Printing statistics ...")

 say ""; say "Statistics:"; /* Print statistics */
 say "* Average image datasize per frame: " totalSize/frames "bytes"
 say "* Average frames per second:" 1000/(totalTime/frames) "fps"

Other Sources of Information

o A good starting point for finding information about REXX on the World Wide Web is the IBM REXX

page at http://www2.hursley.ibm.com/rexx/rexx.htm
o The REXX Files, a monthly column in OS/2 e-Zine! at http://www.os2ezine.com, covers the application

of REXX to various programming problems.
o The Enterprise REXX web site at htpp://www.winrexx.com provides information on the version of

REXX used in the Windows version of MainActor, as well as links to general REXX information.
o Dave Martin's REXX FAQ page can be found at

http://www.mindspring.com/~dave_martin/RexxFAQ.html
   

